Introduction:

e ThreadOS - educational OS emulator

e Problems in Java ThreadOS:

e | imitations cause issues

e Poor documentation on the Java version

¢ Goals for C++ ThreadOS:
¢ Improved synchronization
¢ Better packaging methods
e Better documentation (in websites and code)

Purpose and Tasks:

¢ Solve a bug between Scheduler and Loader

¢ Create a new scheduling algorithm

¢ \erify the Filesystem classes

¢ Fix any bugs found along the way

¢ Remove and update deprecated documentation

Results:

e Switch Scheduler to Cooperative
Multitasking Algorithm

¢ Ensure type-safety in Filesystem classes

¢ Correct behavior is displayed in all tests

e Removed deprecated information in HTML

ThreadOS C++ Port Continuation

By Nathan Pham ; Faculty Advisor: Erika Parsons

V. Z2E

1. Purpose | 2.Scheduling Algorithms and ThreadOS | 3. Overview: The Scheduler Class | 4. Statement of Work | 5. What to Turn In
1

Figure 3. Scheduler class user thread class execution loop code

The ThreadOS scheduler CAN be modified to enforce a rigid round-robin algorithm. By using the ThreadClass::setYieldSignal() and
ThreadClass:resume() methods, we can cooperatively tell currently executing threads to halt their execution when they check the state of
their yield signal.

NOTE: To ensure that all test threads are being scheduled properly, tests that inherit the ThreadClass must call

ithis->tryJoin()

after or before a significant amount of work is done. This method tells the thread to check on its yield signal status, which is set by the Scheduler, and tries to
suspend itself when it is set to true. To allow portability, the implementation of native threads could not be assumed other than being the most simplest
thread, the POSIX thread. This thread implies the notion that A Thread A cannot suspend a Thread B without the cooperation of Thread B. In other
words, Thread A can turn on and off flags to tell Thread B to suspend, but it is Thread B that ultimately calls suspend() to suspend itself. It is recommended to
place tryJoin() in each iteration of a loop, or before or after a SysLib call (a time-consuming function) to ensure Thread B's cooperation.

The main reason is this: Suppose that Thread A has a reference to Thread B (such as a pointer called cur). If cur->suspend() is called inside
Thread A, the answer will surprise you. Thread B will not suspend, but in fact, Thread A will suspend! This is because suspending threads only
work upon the currently executing thread that called it, and that thread just so happens to be Thread A! In the best case scenario, Thread B
will call SysLib.exit() and Thread A wakes up. This means that B will continue uninterrupted until completion without Thread A's
management. However, if Thread B never calls SysLib.exit() Thread A will be suspended forever.

(Food for Thought: Programmers who work with multithreaded programs usually like to know where exactly in the code do threads suspend,
which supports code traceability and debugging. Asynchronous suspends can be bad because a programmer would never know where
exactly in the code did the thread stop.)

3. Overview: The Scheduler Class

This section describes the Scheduler class’s supporting classes (i.e., the TCB class), as well as the Scheduler class’s provided functionality,
public interfaces, and private data members.

Figure 3. Website Modification Example

What | learned:

¢ First experience contributing to a long-term
project

¢ Linux and POSIX Thread functions and
limitations

¢ Applying synchronization techniques

¢ Doxygen, GitLab, HTML

e OS emulation is quite fun!

Thread0S »>> 1 Test5

sysExec(Test5)

adding thread to scheduler

thread0S: a new thread (thread=Thread[Thread-2,2,main] tid=1 pid=0)

1: format(48).ueiennnnnnnnnnnnn successfully completed
Correct behavior of format.............cciuinns 2
2: fd = open("css430", "w+")....successfully completed
Correct behavior of open.........coiviuininnnnn. 2
3: size = write(fd, buf[16])....successfully completed
Correct behavior of writing a few bytes......... 2
4: close(fd)uvenrennnnnnnnnnnnns successfully completed
Correct behavior of close........coviviininnnnnnn 2
5: reopen and read from "css43@"..successfully completed
Correct behavior of reading a few bytes......... 2
6: append buf[32] to "css430"..... successfully completed
Correct behavior of appending a few bytes....... 1
7: seek and read from "css43@"....successfully completed
Correct behavior of seeking in a small file..... 1
8: open "css430" with wi.......... successfully completed

Correct behavior of read/writing a small file.@.5
9: fd = open("bothell”, "w")....successfully completed
10: size = write(fd, buf[6656]).successfully completed
Correct behavior of writing a lot of bytes....0.5
11: close(fd Juveveenennennnnnnnnn successfully completed
12: reopen and read from "bothell"successfully completed
Correct behavior of reading a lot of bytes....0.5
13: append buf[32] to "bothell™...successfully completed
Correct behavior of appending to a large file.0.5
14: seek and read from "bothell"...successfully completed
Correct behavior of seeking in a large file...0.5

Load Thread
dOCS Start Thread
Lo . . . a rea
e Added additional instructions in HTML docs
Expected Result from Actual Result from
Asynchronous Suspension Paradigm Asynchronous Suspension Paradigm
Sleep()
Load Thread Load Thread :
Set Yield Flag
Run Thread Run Thread (Class tid, true)
Sleep Perform Tasks Sleep P
Suspend Thread Suspend Thread . Set Yield Flag
(Class tid) Suspend Thread (glass tid) ; (Class tid, false)
0
r Resume Thread
Resume Thread m .
(Class tid) Continue Tasks ams
T
a
s
K -
s
SysLib.exit()
(resumes thread
waiting on
its tid)

Figure 1: Scheduler Issue lllustration

Figure 2. Cooperative Multitasking Example

Special Thanks to Erika Parsons and Ardalan Ahanchi

Perform Tasks

Check Yield Flag

Perform Tasks

Check Yield Flag
Suspend()

18: uwb@® read b/w Test5 & Test6...

15: open "bothell” with w+......... successfully completed
Correct behavior of read/writing a large file.0.5
16: delete("css430")....ieunnnnnn. successfully completed
Correct behavior of delete.................... 0.5
17: create uwb@-29 of 512*13...... successfully completed
Correct behavior of creating over 40 files ...0.5

Figure 4. Filesystem Test Validation

Future Work:

e Cross-Platform Packaging Support

e Automated Testing (optional)

Tools Used:

E Edraw

W GitLab

